Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Iris-based biometric authentication is a wide-spread biometric modality due to its accuracy, among other benefits. Improving the resistance of iris biometrics to spoofing attacks is an important research topic. Eye tracking and iris recognition devices have similar hardware that consists of a source of infra-red light and an image sensor. This similarity potentially enables eye tracking algorithms to run on iris-driven biometrics systems. The present work advances the state-of-the-art of detecting iris print attacks, wherein an imposter presents a printout of an authentic user’s iris to a biometrics system. The detection of iris print attacks is accomplished via analysis of the captured eye movement signal with a deep learning model. Results indicate better performance of the selected approach than the previous state-of-the-art.more » « less
-
Abstract This manuscript presents GazeBase, a large-scale longitudinal dataset containing 12,334 monocular eye-movement recordings captured from 322 college-aged participants. Participants completed a battery of seven tasks in two contiguous sessions during each round of recording, including a – (1) fixation task, (2) horizontal saccade task, (3) random oblique saccade task, (4) reading task, (5/6) free viewing of cinematic video task, and (7) gaze-driven gaming task. Nine rounds of recording were conducted over a 37 month period, with participants in each subsequent round recruited exclusively from prior rounds. All data was collected using an EyeLink 1000 eye tracker at a 1,000 Hz sampling rate, with a calibration and validation protocol performed before each task to ensure data quality. Due to its large number of participants and longitudinal nature, GazeBase is well suited for exploring research hypotheses in eye movement biometrics, along with other applications applying machine learning to eye movement signal analysis. Classification labels produced by the instrument’s real-time parser are provided for a subset of GazeBase, along with pupil area.more » « less
-
null (Ed.)Typically, the position error of an eye-tracking device is measured as the distance of the eye-position from the target position in two-dimensional space (angular offset). Accuracy is the mean angular offset. The mean is a highly interpretable measure of central tendency if the underlying error distribution is unimodal and normal. However, in the context of an underlying multimodal distribution, the mean is less interpretable. We will present evidence that the majority of such distributions are multimodal. Only 14.7% of fixation angular offset distributions were unimodal, and of these, only 11.5% were normally distributed. (Of the entire dataset, 1.7% were unimodal and normal.) This multimodality is true even if there is only a single, continuous tracking fixation segment per trial. We present several approaches to measure accuracy in the face of multimodality. We also address the role of fixation drift in partially explaining multimodality.more » « less
-
null (Ed.)This paper introduces a novel eye movement dataset collected in virtual reality (VR) that contains both 2D and 3D eye movement data from over 400 subjects. We establish that this dataset is suitable for biometric studies by evaluating it with both statistical and machine learning–based approaches. For comparison, we also include results from an existing, similarly constructed dataset.more » « less
-
null (Ed.)Metric learning is a valuable technique for enabling the ongoing enrollment of new users within biometric systems. While this approach has been heavily employed for other biometric modalities such as facial recognition, applications to eye movements have only recently been explored. This manuscript further investigates the application of metric learning to eye movement biometrics. A set of three multilayer perceptron networks are trained for embedding feature vectors describing three classes of eye movements: fixations, saccades, and post-saccadic oscillations. The network is validated on a dataset containing eye movement traces of 269 subjects recorded during a reading task. The proposed algorithm is benchmarked against a previously introduced statistical biometric approach. While mean equal error rate (EER) was increased versus the benchmark method, the proposed technique demonstrated lower dispersion in EER across the four test folds considered herein.more » « less
-
As eye tracking can reduce the computational burden of virtual reality devices through a technique known as foveated rendering, we believe not only that eye tracking will be implemented in all virtual reality devices, but that eye tracking biometrics will become the standard method of authentication in virtual reality. Thus, we have created a real-time eye movement-driven authentication system for virtual reality devices. In this work, we describe the architecture of the system and provide a specific implementation that is done using the FOVE head-mounted display. We end with an exploration into future topics of research to spur thought and discussion.more » « less
An official website of the United States government
